
SCYLLADB WHITE PAPER

Apache Cassandra 4.0
Performance Benchmark
Comparing Cassandra 4.0, Cassandra 3.11 and Scylla Open Source 4.4

Piotr Grabowski
Software Engineer, ScyllaDB

Juliusz Stasiewicz
Software Engineer, ScyllaDB

Karol Baryla
Junior Software Engineer, ScyllaDB

2

CONTENTS

3 SUMMARY OF RESULTS

6 LIMITATIONS OF OUR TESTING

6 CLUSTER OF THREE I3.4XLARGE NODES

6 3-NODE TEST SETUP

7 THROUGHPUT AND LATENCIES

7 “Real-life” (Gaussian) Distribution

8 Mixed Workload – 50% reads and 50% writes

10 Uniform Distribution (disk-intensive, low cache hit ratio)

10 Writes Workload – Only Writes

11 Reads Workload – Only Reads

12 Mixed Workload – 50% reads and 50% writes

14 Writes Workload – Only Writes

14 Writes Workload – Only Writes

15 Reads Workload – Only Reads

16 Mixed Workload – 50% reads and 50% writes

18 ADDING NODES

18 One New Node

20 Doubling Cluster Size

21 REPLACE NODE

22 MAJOR COMPACTION

23 “4 VS. 40” BENCHMARK

23 4 VS. 40 NODE SETUP

24 THROUGHPUT AND LATENCIES
24 Mixed Workload – 50% reads and 50% writes

26 SCALING THE CLUSTER UP BY 25%

27 MAJOR COMPACTION

27 SUMMARY

28 SUPPLEMENTARY INFORMATION

3

SUMMARY OF RESULTS
The detailed results and the fully optimized
setup instructions are shared later in this report.
We compared two deployment options in the
AWS EC2 environment:

1. The first is an apples-to-apples comparison of
3-node clusters.

2. The second is a larger-scale setup where we
used node sizes optimal for each database.
Scylla can utilize very large nodes so we
compared a setup of 4 i3.metal machines (288
vCPUs in total) vs. 40 (!) i3.4xlarge Cassandra
machines (640 vCPUs in total - almost 2.5x
the Scylla’s resources).

Key findings:

• Cassandra 4.0 has better P99 latency than
Cassandra 3.11 by 100x

• Cassandra 4.0 speeds up admin operations by
up to 34% compared to Cassandra 3.11

• Scylla has 2x-5x better throughput than
Cassandra 4.0 on the same 3-node cluster

• Scylla has 3x-8x better throughput than
Cassandra 4.0 on the same 3-node cluster
while P99 < 10 ms

• Scylla adds a node 3x faster than
Cassandra 4.0

• Scylla replaces a node 4x faster than
Cassandra 4.0

• Scylla doubles a 3-node cluster capacity 2.5x
faster than Cassandra 4.0

• A 40 TB cluster is 2.5x cheaper with Scylla
while providing 42% more throughput under
P99 latency of 10 ms

• Scylla adds 25% capacity to a 40 TB
optimized cluster 11x faster than Cassandra 4.0.

• Scylla finishes compaction 32x faster than
Cassandra 4.0

• Cassandra 4.0 can achieve a better latency
with 40 i3.4xlarge nodes than 4 i3.metal
Scylla nodes when the throughput is low and
the cluster is being underutilized.
Explanation follows.

In July 2021, after nearly six years of work, the engineers behind Apache Cassandra

incremented the database’s major version from 3 to 4. In the rapidly evolving realm of big

data, six years encompasses almost an entire technology cycle, with new Java virtual

machines, new system kernels, new hardware, new libraries and even new algorithms.

Progress in these areas presented the engineers behind Cassandra with unprecedented

opportunities to achieve new levels of performance. Throughout this period, ScyllaDB

also progressed significantly in the areas of high performance, resilience, and operational

integrity, continuously improving the Scylla database engine with new features and

optimizations.

In this paper, we compare the performance of the latest release of Scylla Open Source

against Cassandra 3 and the newly released Cassandra 4. We present the latencies

and throughputs measured for various workloads, as well as the speed of common

administrative operations such expanding clusters and running major compactions.

4

The 90- and 99-percentile latencies of UPDATE queries, as measured on three i3.4xlarge
machines (48 vCPUs in total) in a range of load rates. Cassandra quickly became functionally
nonoperational, serving requests with tail latencies that exceeded 1 second.

The 99-percentile (P99) latencies in different scenarios, as measured on 3 x i3.4xlarge
machines (48 vCPUs in total) under load that puts Cassandra 4.0 halfway to saturation.
Scylla excels at response times: Cassandra 4.0 P99 latencies are anywhere between 80% to
2,200% greater than Scylla 4.4.

5

The maximum throughput (measured in operations per second) achieved on 3 x i3.4xlarge
machines (48 vCPUs). Scylla processed 2x - 5x more requests than either of the Cassandra
releases.

The time taken by replacing a 1 TB node, measured under Size-Tiered Compaction Strategy
(STCS) and Leveled Compaction Strategy (LCS). By default (STCS) Scylla is almost 4x faster
than Cassandra 4.0.

6

LIMITATIONS OF OUR TESTING
It’s important to note that this basic
performance analysis does not cover all factors
in deciding whether to stay put on Cassandra
3.x, upgrade to Cassandra 4.0, or to migrate
to Scylla Open Source 4.4. Users may be
wondering if the new features of Cassandra
4.0 are compelling enough, or how changes
between implemented features compare
between Cassandra and Scylla. To give a
couple examples, you can read more about
the difference in CDC implementations here,
and how Scylla’s Lightweight Transactions
(LWT) differ from Cassandra’s here. Apart from
comparison of basic administrative tasks like
adding one or more nodes, which is covered
below, benchmarking implementation of specific
features is beyond the scope of this paper.

Additionally, there are issues of risk aversion
based on stability and maturity for any new
software release — for example, the ZGC
garbage collector we used currently employs
Java 16, which is supported by Cassandra but
not considered production-ready; newer JVMs
are not yet officially supported by Cassandra.

CLUSTER OF THREE
I3.4XLARGE NODES

3-NODE TEST SETUP
The purpose of this test was to compare
the performance of Scylla vs. both versions
of Cassandra on the exact same hardware.
We wanted to use relatively typical, current
generation servers running on AWS so that
others could replicate these tests, and in order
to reflect a real-world setup.

Latencies of SELECT query, as measured on 40 TB cluster on uneven hardware — 4 nodes
(288 vCPUs) for Scylla and 40 nodes (640 vCPUs) for Cassandra.

AWS Instance
Type

Cassandra/
Scylla Loaders

EC2 Instance type i3.4xlarge c5n.9xlarge

Cluster size 3 3

vCPUs (total) 16 (48) 36 (108)

RAM (total) 122 (366) GiB 96 (288) GiB

Storage (total) 2x 1.9TB NVMe
in RAID0
(3.8 TB)

Not important
for a loader
(EBS-only)

Network Up to 10 Gbps 50 Gbps

https://www.scylladb.com/2020/07/23/using-change-data-capture-cdc-in-scylla/
https://www.scylladb.com/2020/07/15/getting-the-most-out-of-lightweight-transactions-in-scylla/

7

We set up our cluster on Amazon EC2, in
a single Availability Zone within us-east-2.
Database cluster servers were initialized with
clean machine images (AMIs), running CentOS
7.9 with Scylla Open Source 4.4 and Ubuntu
20.04 with Cassandra 4.0 or Cassandra
3.11 (which we’ll refer to as “C*4” and “C*3”,
respectively).

Apart from the cluster, three loader machines
were employed to run cassandra-stress in order
to insert data and, later, to provide background
load to mess with the administrative operations.

Once up and running, the databases were
loaded by cassandra-stress with random data
organized into the default schema at RF=3. The
loading continued until the cluster’s total disk
usage reached approx. 3 TB (or 1 TB per node).
The exact disk occupancy would, of course,
depend on running compactions and the size of
other related files (commitlogs, etc.). Based on
the size of the payload, this translated to ~3.43
billion partitions. We then flushed the data and
waited until the compactions finished, so we
could start the actual benchmarking.

THROUGHPUT AND LATENCIES
The actual benchmarking is a series of
simple invocations of cassandra-stress with
CL=QUORUM. For 30 minutes we kept firing
10,000 requests per second and monitored the
latencies. Then we increased the request rate
by another 10,000 for another 30 min, and so
on. (20,000 in case of larger throughputs). The
procedure repeated until the DB was no longer
capable of withstanding the traffic, i.e. until
cassandra-stress could not achieve the desired
throughput or until the 90-percentile latencies
exceeded 1 second.

Note: This approach meant that throughput
numbers are presented with 10k/s granularity (in
some cases 20k/s).

We tested the databases with the following
distributions of data:

1. “Real-life” (Gaussian) distribution, with
sensible cache-hit ratios of 30-60%

2. Uniform distribution, with a close-to-zero
cache hit ratio

3. “In-memory” distribution, expected to yield
almost 100% cache hits

Within these scenarios we ran the following
workloads:

1. 100% writes

2. 100% reads

3. 50% writes and 50% reads

“REAL-LIFE” (GAUSSIAN) DISTRIBUTION
In this scenario we issued queries that touched
partitions randomly drawn from a narrow
Gaussian distribution. We made an Ansatz
about the bell curve: We assumed that its six-
sigma spans the RAM of the cluster (corrected
for the replication factor). The purpose of this
experiment was to model a realistic workload,
with a substantial cache hit ratio but less than
100%, because most of our users observe the
figures of 60-90%. We expected Cassandra to
perform well in this scenario because its key
cache is denser than Scylla’s, i.e. it efficiently
stores data in RAM, though it relies on SSTables
stored in the OS page cache, which can be
heavyweight to look up. By comparison,
Scylla uses a row-based cache mechanism.
This Gaussian distribution test should indicate
which database uses the more efficient caching
mechanism for reads.

https://www.scylladb.com/2018/07/26/how-scylla-data-cache-works/

8

The 90- and 99-percentile latencies of UPDATE queries, as measured on three i3.4xlarge
machines (48 vCPUs in total) in a range of load rates. Workload consisted of 50% reads
and 50% writes, randomly targeting a “realistic” Gaussian distribution. Cassandra 3 quickly
became nonoperational, Cassandra 4 was a little better. Meanwhile Scylla maintained low
and consistent write latencies across the entire range.

Metric Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11 Cassandra 4.0
vs Cassandra

3.11

Scylla 4.4.3
vs Cassandra

4.0

Maximum
throughput

80k/s 40k/s 30k/s 1.33x 2x

Maximum
throughput with
90% latency < 10ms

80k/s 30k/s 10k/s 3x 2.66x

Maximum
throughput with
99% latency < 10ms

80k/s 30k/s - - 2.66x

Mixed Workload – 50% reads and 50% writes

9

The 90- and 99-percentile latencies of SELECT queries, as measured on three i3.4xlarge
machines (48 vCPUs in total) in a range of load rates. The workload consisted of 50% reads
and 50% writes, randomly targeting a “realistic” Gaussian distribution. Cassandra 3 quickly
became nonoperational, Cassandra 4 performed a little better. Meanwhile Scylla maintained
low and consistent response times across the entire range.

Metric Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11 Cassandra 4.0
vs Cassandra

3.11

Scylla 4.4.3
vs Cassandra

4.0

Maximum
throughput

90k/s 40k/s 40k/s 1x 2.25x

Maximum
throughput with
90% latency < 10ms

80k/s 30k/s 10k/s 3x 2.66x

Maximum
throughput with
99% latency < 10ms

70k/s 10k/s - - 7x

10

The 90- and 99-percentile latencies of UPDATE queries, as measured on three i3.4xlarge
machines (48 vCPUs in total) in a range of load rates. Workload was uniformly distributed,
i.e. every partition in the 1 TB dataset had an equal chance of being updated. Cassandra
3 quickly became nonoperational. Cassandra 4 performed a little better. Meanwhile Scylla
maintained low and consistent write latencies up until 170,000-180,000 ops/s.

UNIFORM DISTRIBUTION (DISK-INTENSIVE, LOW CACHE HIT RATIO)
In this scenario we issued queries that touched random partitions of the entire dataset. In our setup this
should result in high disk traffic and/or negligible cache hit rates, i.e. that of a few %.

Metric Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11 Cassandra 4.0
vs Cassandra

3.11

Scylla 4.4.3
vs Cassandra

4.0

Maximum
throughput

180k/s 50k/s 40k/s 1.25x 3.6x

Maximum
throughput with
90% latency < 10ms

180k/s 40k/s 20k/s 2x 4.5x

Maximum
throughput with
99% latency < 10ms

170k/s 30k/s 5.66x

Writes Workload – Only Writes

11

The 90- and 99-percentile latencies of SELECT queries, as measured on three i3.4xlarge
machines (48 vCPUs in total) in a range of load rates. The workload was uniformly
distributed, i.e. every partition in the 1 TB dataset had an equal chance of being selected.
Scylla served 90% of queries in <5 ms until the load reached 70,000 ops/s. Please note that
almost all reads were served from disk.

Metric Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11 Cassandra 4.0
vs Cassandra

3.11

Scylla 4.4.3
vs Cassandra

4.0

Maximum
throughput

80k/s 40k/s 30k/s 1.25x 2x

Maximum
throughput with
90% latency < 10ms

70k/s 40k/s 30k/s 1.25x 1.75x

Maximum
throughput with
99% latency < 10ms

60k/s 20k/s 3x

Reads Workload – Only Reads

12

The 90- and 99-percentile latencies of UPDATE queries, as measured on three i3.4xlarge
machines (48 vCPUs in total) in a range of load rates. The workload was uniformly
distributed, i.e. every partition in the 1 TB dataset had an equal chance of being selected/
updated. At 80,000 ops/s Scylla maintained the latencies of 99% of queries in a single-figure
regime (in milliseconds).

Metric Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11 Cassandra 4.0
vs Cassandra

3.11

Scylla 4.4.3
vs Cassandra

4.0

Maximum
throughput

90k/s 40k/s 40k/s 1x 2.25x

Maximum
throughput with
90% latency < 10ms

80k/s 40k/s 20k/s 2x 2x

Maximum
throughput with
99% latency < 10ms

80k/s 30k/s 2.66x

Mixed Workload – 50% reads and 50% writes

13

The 90- and 99-percentile latencies of SELECT queries, as measured on three i3.4xlarge
machines (48 vCPUs in total) in a range of load rates. The workload was uniformly
distributed, i.e. every partition in the 1 TB dataset had an equal chance of being selected/
updated. Under such conditions Scylla handled 2x more traffic than the Cassandra releases
and offered highly predictable response times.

Metric Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11 Cassandra 4.0
vs Cassandra

3.11

Scylla 4.4.3
vs Cassandra

4.0

Maximum
throughput

90k/s 40k/s 40k/s 1x 2.25x

Maximum
throughput with
90% latency < 10ms

80k/s 30k/s 20k/s 1.5x 2.66x

Maximum
throughput with
99% latency < 10ms

60k/s 20k/s 3x

14

Metric Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11 Cassandra 4.0
vs Cassandra

3.11

Scylla 4.4.3
vs Cassandra

4.0

Maximum
throughput

200k/s 40k/s 40k/s 1x 5x

Maximum
throughput with
90% latency < 10ms

200k/s 40k/s 20k/s 2x 5x

Maximum
throughput with
99% latency < 10ms

200k/s 40k/s 5x

WRITES WORKLOAD – ONLY WRITES

Writes Workload – Only Writes

The 90- and 99-percentile latencies of UPDATE queries, as measured on three i3.4xlarge
machines (48 vCPUs in total) in a range of load rates. The workload was uniformly distributed
over 60 GB of data, so that every partition resided in cache and had an equal chance of being
updated. The Cassandra databases instantly became nonoperational; Scylla withstood
load more than 5x that of the Cassandra releases and maintained low and consistent write
latencies over the entire range.

15

Metric Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11 Cassandra 4.0
vs Cassandra

3.11

Scylla 4.4.3
vs Cassandra

4.0

Maximum
throughput

300k/s 80k/s 60k/s 1.33x 3.75x

Maximum
throughput with
90% latency < 10ms

260k/s 60k/s 40k/s 1.5x 4.33x

Maximum
throughput with
99% latency < 10ms

240k/s 40k/s - - 6x

Reads Workload – Only Reads

The 90- and 99-percentile latencies of SELECT queries, as measured on three i3.4xlarge
machines (48 vCPUs in total) in a range of load rates. The workload was uniformly distributed
over 60 GB of data, so that every partition resided in cache and had an equal chance of being
selected. Scylla withstood load more than 3x higher than Cassandra 4 and 4x greater than
Cassandra 3.

16

Metric Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11 Cassandra 4.0
vs Cassandra

3.11

Scylla 4.4.3
vs Cassandra

4.0

Maximum
throughput

180k/s 40k/s 40k/s 1x 4.5x

Maximum
throughput with
90% latency < 10ms

160k/s 40k/s 20k/s 2x 4x

Maximum
throughput with
99% latency < 10ms

160k/s 40k/s - - 4x

Mixed Workload – 50% reads and 50% writes

The 90- and 99-percentile latencies of UPDATE queries, as measured on three i3.4xlarge
machines (48 vCPUs in total) in a range of load rates. The workload was uniformly distributed
over 60 GB of data, so that every partition resided in cache and had an equal chance of
being selected/updated. Scylla withstood load over 3x higher than either of the Cassandra
releases.

17

Metric Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11 Cassandra 4.0
vs Cassandra

3.11

Scylla 4.4.3
vs Cassandra

4.0

Maximum
throughput

180k/s 40k/s 40k/s 1x 4.5x

Maximum
throughput with
90% latency < 10ms

160k/s 40k/s 20k/s 2x 4x

Maximum
throughput with
99% latency < 10ms

160k/s 20k/s - - 8x

The 90- and 99-percentile latencies of SELECT queries, as measured on three i3.4xlarge
machines (48 vCPUs in total) in a range of load rates. The workload was uniformly distributed
over 60 GB of data, so that every partition resided in cache and had an equal chance of being
selected/updated. Scylla withstood load more than 3x higher than either of the Cassandra
releases.

18

ADDING NODES

ONE NEW NODE
In this benchmark, we measured how long it takes to add a new node to the cluster. The reported times
are the intervals between starting a Scylla/Cassandra node and having it fully finished bootstrapping
(CQL port open).

Cassandra 4.0 is equipped with a new feature — Zero Copy Streaming — which allows for efficient
streaming of entire SSTables. An SSTable is eligible for ZCS if all of its partitions need to be transferred,
which can be the case when LeveledCompactionStrategy (LCS) is enabled. Willing to demonstrate this
feature, we run the next benchmarks with the usual SizeTieredCompactionStrategy (STCS) compared to
LCS.

The timeline of adding 3 nodes to an existing 3-node cluster (resulting in six i3.4xlarge
machines). Total time for Scylla 4.4 to double the cluster size was 94 minutes 57 seconds.
For Cassandra 4.0, it took 238 minutes 21 seconds (just shy of 4 hours); Cassandra 3.11 took
270 minutes (4.5 hours). While Cassandra 4.0 noted a 12% improvement over Cassandra 3.11,
Scylla completed the entire operation before either version of Cassandra bootstraped its first
new node.

19

The time needed to add a node to an already existing 3-node cluster (resulting in 4 i3.4xlarge
machines). The cluster was initially loaded with 1 TB of data at RF=3. Cassandra 4.0 showed
an improvement over Cassandra 3.11, but Scylla still out-performed the Cassandra releases
by a large margin.

Strategy Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11

STCS 36 minutes 56 seconds 1 hour 47 minutes 1 second 2 hours 6 minutes

LCS 44 minutes 11 seconds 1 hour 39 minutes 45 seconds 2 hours 23 minutes
10 seconds

Strategy Cassandra 4.0 vs Cassandra 3.11 Scylla 4.4.3 vs Cassandra 4.0

STCS -15% -65%

LCS -30% -55%

20

The time needed to add 3 nodes to an existing 3-node cluster of i3.4xlarge machines,
preloaded with 1 TB of data at RF=3. Cassandra 4.0 performed moderately better than
Cassandra 3.11. but Scylla outperformed the other databases.

Strategy Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11

STCS 1 hour 34 minutes 57 seconds 3 hours 58 minutes
21 seconds

4 hours 30 minutes
7 seconds

LCS 2 hours 2 minutes 37 seconds 3 hours 44 minutes
6 seconds

4 hours 44 minutes
46 seconds

Strategy Cassandra 4.0 vs Cassandra 3.11 Scylla 4.4.3 vs Cassandra 4.0

STCS -11% -60%

LCS -21% -45%

DOUBLING CLUSTER SIZE
In this benchmark, we measured how long it takes to double the cluster node count, going from 3 nodes
to 6 nodes. Three new nodes were added sequentially, i.e. waiting for the previous one to fully bootstrap
before starting the next one. The reported time spans from the instant the startup of the first new node
was initiated, all the way until the bootstrap of the third new node finished.

21

The time needed to replace a node in a 3-node cluster of i3.4xlarge machines, preloaded
with 1 TB of data at RF=3. Cassandra 4.0 noted an improvement over Cassandra 3.11. but
Scylla was still the clear winner, taking about an hour to do what Cassandra 4.0 took more
than 3 hours to accomplish.

Strategy Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11

STCS 54 minutes, 19 seconds 3 hours, 28 minutes,
46 seconds

4 hours, 35 minutes,
56 seconds

LCS 1 hour, 9 minutes, 18 seconds 3 hours, 19 minutes,
17 seconds

5 hours, 4 minutes,
9 seconds

Strategy Cassandra 4.0 vs Cassandra 3.11 Scylla 4.4.3 vs Cassandra 4.0

STCS -24% -73%

LCS -34% -65%

REPLACE NODE
In this benchmark, we measured how long it took to replace a single node. One of the nodes was
brought down and another one was started in its place. Throughout this process the cluster was being
agitated by a mixed R/W background load of 25,000 ops at CL=QUORUM.

22

MAJOR COMPACTION
In this benchmark, we measured how long it took to replace a single node. One of the nodes was In this
benchmark, we measured how long it takes to perform a major compaction on a single node loaded
with roughly 1TB of data. Thanks to Scylla’s sharded architecture, it can perform the major compactions
on each shard concurrently, while Cassandra is single-thread bound. The result of major compaction
is the same in both Scylla and Cassandra: A read is served by a single SSTable. In the later section of
this paper we also measure the speed of a major compaction in a case where there are many small
Cassandra nodes (which get higher parallelism). We observed worse major compaction performance in
Cassandra 4.0.0 with the default num_tokens: 16 parameter.

Major compaction of 1 TB of data at RF=1 on i3.4xlarge machine. Scylla demonstrated the
power of a sharded architecture by compacting on all cores concurrently. In this case Scylla
was up to 60x faster. This figure should continue to scale linearly with the number of cores.

Scylla 4.4.3 Cassandra 4.0 Cassandra 3.11

Major
Compaction

(num_
tokens: 16)

num_tokens: 16

not recommended

21 hours, 47 minutes,
34 seconds

(78,454 seconds)

24 hours, 50 minutes,
42 seconds

(89,442 seconds)

Major
Compaction

(num_
tokens:
256)

36 minutes, 8 seconds

(2,168 seconds)

37 hours, 56 minutes,
32 seconds

(136,592 seconds)

23 hours, 48 minutes,
56 seconds

(85,736 seconds)

23

“4 VS. 40” BENCHMARK
Now let us compare the databases installed on
different hardware. In this scenario, Scylla gets
four powerful 72-core servers, while Cassandra
gets 40 of the same i3.4xlarge servers as before.
Why would anyone ever consider such a test?
After all, we’re comparing some 4 machines
to 40 very different machines. (In terms of
CPU count, RAM volume or cluster topology
this would appear to be an apples-to-oranges
comparison.)

However, due to its sharded architecture and
custom memory management Scylla can utilize
very large hunks of hardware. Meanwhile,
Cassandra and its JVM’s garbage collectors
excel when they are heavily distributed, with
many smaller nodes on the team. So, the true
purpose of this test is to show that both CQL
solutions can perform similarly in a pretty fair

duel, yet Cassandra requires about 2.5x more
hardware, for 2.5x the cost. What’s really at
stake now is a reduction in the administrative
burden, where a DBA would have either 40
servers to maintain or just 4.

4 VS. 40 NODE SETUP
We set up clusters on Amazon EC2 in a single
Availability Zone within us-east-2 datacenter,
but this time the Scylla cluster consisted of 4
i3.metal VMs. The competing Cassandra cluster
consisted of 40 i3.4xlarge VMs. Servers were
initialized with clean machine images (AMIs) of
Ubuntu 20.04 (Cassandra 4.0) or CentOS 7.9
(Scylla 4.4).

Apart from the cluster, fifteen loader machines
were used to run cassandra-stress to insert data,
and – later – to provide background load at
CL=QUORUM to mess with the administrative
operations.

Scylla Cassandra Loaders

EC2
Instance
type

i3.metal i3.4xlarge c5n.9xlarge

Cluster size 4 40 15

Storage
(total)

8x 1.9 TB NVMe in RAID0
(60.8 TB)

2x 1.9 TB NVMe in RAID0
(152 TB)

Not important for a loader
(EBS-only)

Network 25 Gbps Up to 10 Gbps 50 Gbps

vCPUs
(total)

72 (288) 16 (640) 36 (540)

RAM (total) 512 (2048) GiB 122 (4880) GiB 96 (1440) GiB

Once up and running, both databases were
loaded with random data at RF=3 until the
cluster’s total disk usage reached approximately
40 TB. This translated to 1 TB of data per

Cassandra node and 10 TB of data per Scylla
node. After loading was done, we flushed the
data and waited until the compactions finished,
so we could start the actual benchmarking.

24

A Scylla cluster can be 10x smaller in node count and run on a cluster 2.5x less expensive,
yet maintain the equivalent performance of Cassandra 4.

THROUGHPUT AND LATENCIES

MIXED WORKLOAD – 50% READS AND 50% WRITES

25

The 90- and 99-percentile latencies of UPDATE queries, as measured on:

• 4-node Scylla cluster (4 x i3.metal, 288 vCPUs in total)

• 40-node Cassandra cluster (40 x i3.4xlarge, 640 vCPUs in total).

The workload was uniformly distributed, i.e. every partition in the multi-TB dataset had an
equal chance of being selected/updated. Under low load Cassandra slightly outperformed
Scylla.The reason for this is that Scylla runs more compaction automatically when it is idle
and the default scheduler tick of 0.5 ms hurts the P99 latency. (Note, there is a parameter
that controls this but we wanted to provide out-of-the-box results with zero custom tuning or
configuration.)

The 90- and 99-percentile latencies of SELECT queries, as measured on:

• 4-node Scylla cluster (4 x i3.metal, 288 vCPUs in total)

• 40-node Cassandra cluster (40 x i3.4xlarge, 640 vCPUs in total).

The workload was uniformly distributed, i.e. every partition in the multi-TB dataset had an
equal chance of being selected/updated. Under low load Cassandra slightly outperformed
Scylla.

Metric Scylla 4.4.3 Cassandra 4.0 Scylla 4.4.3
vs Cassandra 4.0

Maximum
throughput

600k/s 600k/s 1x

Maximum
throughput with
99% latency < 10ms

600k/s 450k/s 1.33x

26

SCALING THE CLUSTER UP BY 25%
In this benchmark, we increase the capacity of the cluster by 25%:

• By adding a single Scylla node to the cluster (from 4 nodes to 5)

• By adding 10 Cassandra nodes to the cluster (from 40 nodes to 50 nodes)

Metric Scylla 4.4.3 Cassandra 4.0 Scylla 4.4
vs Cassandra 4.0

Add 25% capacity 1 hour, 29 minutes 16 hours, 54 minutes 11x faster

Metric Scylla 4.4.3 Cassandra 4.0 Scylla 4.4.3
vs Cassandra 4.0

Maximum
throughput

600k/s 600k/s 1x

Maximum
throughput with
99% latency < 10ms

500k/s 350k/s 1.42x

27

Throughput of a major compaction at RF=1 (more is better). Scylla ran on a single i3.metal
machine (72 vCPUs) and competed with a 10-node cluster of Cassandra 4 (10x i3.4xlarge
machines; 160 vCPUs in total). Scylla can split this problem across CPU cores, which
Cassandra cannot do, so – effectively – Scylla performed 32x better in this case.

Scylla 4.4.3 Cassandra 4.0 Scylla 4.4
vs Cassandra 4.0

Major Compaction 1868 MB/s 56.8 MB/s 32x faster

MAJOR COMPACTION
In this benchmark we measure the throughput of a major compaction. To compensate for Cassandra
having 10 times more nodes (each having 1/10th of the data), this benchmark measures the throughput
of a single Scylla node performing major compaction and the collective throughput of 10 Cassandra
nodes performing major compactions concurrently.

SUMMARY
On identical hardware, Scylla 4.4.3 withstood
up to 5x greater traffic and – in almost every
scenario – offered lower latencies than
Cassandra 4.0. We also demonstrated a specific
use-case where choosing Scylla over Cassandra
4.0 would result in $170,000 monthly savings
in hardware costs alone, without factoring in
reduced administration costs or environmental
impact.

Nonetheless, Cassandra 4.0 is a significant
improvement over Cassandra 3.x. It has aptly
piggy-backed on advancements to the JVM.
Upgrading from Cassandra 3 to Cassandra 4 will
benefit many use cases.

However, organizations that have already
decided to upgrade from Cassandra 3.x should
first consider all their options. Upgrading
Cassandra involves backups, risk of downtime,
and a sleepless night or two. Those who are

28

CASSANDRA 3.11 CONFIGURATION

determined to take this effort, should consider
the return they will receive for their efforts
— in terms of performance and cost savings.
The benchmarks in this study demonstrate
that Scylla is not only far more performant
but also much more affordable. Additionally,
all the information required to re-rerun these
benchmarks is provided herein.

SUPPLEMENTARY
INFORMATION
Here you can check out detailed results of
latency/throughput benchmarks, JVM settings
and cassandra.yaml from Cassandra 3 and
Cassandra 4, as well as cassandra-stress
invocations used to run benchmarks. Scylla used
default configuration.

JVM settings JVM version: OpenJDK 8

-Xms48G
-Xmx48G
-XX:+UseG1GC
-XX:G1RSetUpdatingPauseTimePercent=5
-XX:MaxGCPauseMillis=500
-XX:InitiatingHeapOccupancyPercent=70
-XX:ParallelGCThreads=16

cassandra.yaml Only settings changed from the default configuration are mentioned here.

disk_access_mode: mmap_index_only
row_cache_size_in_mb: 10240
concurrent_writes: 128
file_cache_size_in_mb: 2048
buffer_pool_use_heap_if_exhausted: true
disk_optimization_strategy: ssd
memtable_flush_writers: 4
trickle_fsync: true
concurrent_compactors: 16
compaction_throughput_mb_per_sec: 960
stream_throughput_outbound_megabits_per_sec: 7000

29

CASSANDRA 4.0 CONFIGURATION

CASSANDRA-STRESS PARAMETERS
Only the important facts and options are mentioned below.

• Scylla’s Shard-aware Java driver was used.

• Background loads were executed in the loop (so duration=5m is not a problem).

• REPLICATION_FACTOR is 3 (except for major compaction benchmark).

• COMPACTION_STRATEGY is SizeTieredCompactionStrategy unless stated otherwise.

• loadgenerator_count is the number of generator machines (3 for “3 vs 3” benchmarks, 15 for “4 vs
40”).

• BACKGROUND_LOAD_OPS is 1000 in major compaction, 25000 in other benchmarks.

• DURATION_MINUTES is 10 for memory-intensive benchmarks, 30 for other benchmarks.

JVM settings JVM version: OpenJDK 16

-Xmx70G
-Xmx70G
-XX:ConcGCThreads=16
-XX:+UseZGC
-XX:ConcGCThreads=16
-XX:ParallelGCThreads=16
-XX:+UseTransparentHugePages
-verbose:gc
-Djdk.attach.allowAttachSelf=true
-Dio.netty.tryReflectionSetAccessible=true

cassandra.yaml Only settings changed from the default configuration are mentioned here.

disk_access_mode: mmap_index_only
row_cache_size_in_mb: 10240
concurrent_writes: 128
file_cache_size_in_mb: 2048
buffer_pool_use_heap_if_exhausted: true
disk_optimization_strategy: ssd
memtable_flush_writers: 4
trickle_fsync: true
concurrent_compactors: 16
compaction_throughput_mb_per_sec: 960
stream_throughput_outbound_megabits_per_sec: 7000

In major compaction benchmarks, the parameter compaction_throughput_mb_per_sec
was set to 0 to make sure the compaction was not throttled.

https://docs.scylladb.com/using-scylla/drivers/cql-drivers/scylla-java-driver/

30

Inserting data write cl=QUORUM
-schema “replication(strategy=SimpleStrategy,replication_
factor={REPLICATION_FACTOR})” “compaction(strategy={COMPACTI
ON_STRATEGY})”
-mode native cql3

threads and throttle parameters were chosen for each DB separately, to ensure 3TB
or 40TB were inserted quickly, but to provide headroom for minor compactions and
avoid timeouts/large latencies.

In case of “4 vs 40” benchmarks additional parameter maxPending=1024 was used.

Background load for
replace node

mixed ratio(write=1,read=1)
duration=5m
cl=QUORUM
-pop dist=UNIFORM(1..{ROW_COUNT})
-mode native cql3
-rate “threads=700 throttle={BACKGROUND_LOAD_OPS
// loadgenerator_count}/s”

Background load for
new nodes / major
compaction

mixed ratio(write=1,read=1)
duration=5m
cl=QUORUM
-pop dist=UNIFORM(1..{ROW_COUNT})
-mode native cql3
-rate “threads=700 fixed={BACKGROUND_LOAD_OPS
// loadgenerator_count}/s”

Cache warmup in
Gaussian latency /
throughput

mixed ratio(write=0,read=1)
duration=180m
cl=QUORUM -pop dist=GAUSSIAN(1..
{ROW_COUNT},{GAUSS_CENTER},{GAUSS_SIGMA})
-mode native cql3
-rate “threads=500 throttle=35000/s” -node {cluster_string}’)

Latency /
throughput
- Gaussian

duration={DURATION_MINUTES}m
cl=QUORUM
-pop dist=GAUSSIAN(1..{ROW_COUNT},{GAUSS_CENTER},{GAUSS_SIGMA})
-mode native cql3
“threads=500 fixed={rate // loadgenerator_count}/s”

Latency /
throughput - uniform
/ in-memory

duration={DURATION_MINUTES}m
cl=QUORUM
-pop dist=UNIFORM(1..{ROW_COUNT})
-mode native cql3
-rate “threads=500 fixed={rate // loadgenerator_count}/s”

In case of “4 vs 40” benchmarks additional parameter maxPending=1024 was used.

31

DETAILED RESULTS - THREE I3.4XLARGE NODES

GAUSSIAN DISTRIBUTION - MIXED WORKLOAD - 50% READS AND 50% WRITES

Scylla 4.4.3

Cassandra 4

Load Operation Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

10k/s Write 0.68 0.66 0.81 1.03

Read 1 1.01 1.24 2.05

20k/s Write 0.66 0.6 0.75 2.37

Read 1.04 0.99 1.26 3.56

30k/s Write 0.69 0.6 0.8 2.53

Read 1.09 1 1.4 4.37

40k/s Write 0.83 0.65 0.97 2.62

Read 1.29 1.11 1.78 4.56

50k/s Write 0.97 0.76 1.86 3.02

Read 1.64 1.32 3.05 5.1

60k/s Write 1.37 1.05 2.45 3.97

Read 2.39 1.95 4.41 6.47

70k/s Write 1.5 1.15 2.6 4.75

Read 2.5 2.02 4.5 7.54

80k/s Write 3.55 1.77 3.7 7.37

Read 5.11 3.06 6.61 13.54

90k/s Could not keep up with the load

Load Operation Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

10k/s Write 1.18 1.09 1.4 3.04

Read 2.19 1.82 3.29 7.78

20k/s Write 1.48 1.16 1.73 4.39

Read 2.68 2.01 4.18 10.08

30k/s Write 1.96 1.53 3.03 8.03

Read 3.63 2.73 6.2 17.06

40k/s Write 27.19 3.85 58.65 414.71

Read 31.28 7.13 66.29 421.27

50k/s Could not keep up with the load

32

Cassandra 3

Load Operation Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

10k/s Write 9.77 1.18 2.24 266.6

Read 13 1.95 6.34 275.51

20k/s Write 28.03 1.46 77.4 451.41

Read 30.06 2.56 85.33 457.7

30k/s Write 100.69 3.69 360.45 731.38

Read 104.51 7.02 365.95 738.72

40k/s Could not keep up with the load

UNIFORM DISTRIBUTION (DISK-INTENSIVE) - WRITES WORKLOAD - ONLY WRITES

Scylla 4.4.3

Load Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

10k/s 0.71 0.67 0.82 2.1

20k/s 0.69 0.61 0.74 2.2

30k/s 0.69 0.6 0.73 2.19

40k/s 0.76 0.63 0.83 2.23

50k/s 0.93 0.68 1.96 2.72

60k/s 0.97 0.72 1.95 2.81

70k/s 1.19 0.8 2.13 3.71

80k/s 2.61 2.4 2.79 5.61

90k/s 3.17 2.56 2.98 5.96

100k/s 3.1 2.56 2.97 6.05

110k/s 3.31 2.58 3.07 6.28

120k/s 2.75 2.44 2.93 6.07

130k/s 3.12 2.56 3.1 6.56

140k/s 3.12 2.55 3.11 6.89

150k/s 3.51 2.36 3.02 7.2

160k/s 4.1 2.49 3.18 7.92

170k/s 5.72 2.78 3.73 9.67

180k/s 7.87 2.99 4.58 39.32

190k/s Could not keep up with the load

33

Cassandra 4

Cassandra 3

Load Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

10k/s 0.9 0.88 1.07 1.25

20k/s 0.9 0.86 1.04 1.34

30k/s 1.31 0.92 1.18 3.87

40k/s 2.27 1.15 2.5 23.28

50k/s 38.13 2.26 136.31 494.67

60k/s Could not keep up with the load

Load Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

10k/s 3.44 0.91 1.13 79.3

20k/s 12.12 0.94 1.29 325.58

30k/s 27.99 1.14 88.34 423.36

40k/s 89.41 2.38 347.34 740.82

50k/s Could not keep up with the load

Load Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

10k/s 1.11 1.09 1.28 1.67

20k/s 1.13 1.07 1.32 1.98

30k/s 1.51 1.14 1.57 2.78

40k/s 1.59 1.3 1.97 3.63

50k/s 2.38 1.58 2.6 5.27

60k/s 3.74 2.09 3.75 7.87

70k/s 8.99 2.65 5.59 195.3

80k/s 38.98 4.56 121.11 504.63

90k/s Could not keep up with the load

UNIFORM DISTRIBUTION (LOW CACHE HIT RATIO) - READS WORKLOAD - ONLY READS

Scylla 4.4.3

34

Cassandra 3

Load Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

10k/s 2.46 1.35 1.7 16.33

20k/s 3.1 1.52 2.81 29.51

30k/s 6.07 2.11 6.25 117.05

40k/s Could not keep up with the load

UNIFORM DISTRIBUTION - MIXED WORKLOAD - 50% READS AND 50% WRITES

Scylla 4.4.3

Load Operation Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

10k/s
Write 0.71 0.68 0.84 1.62

Read 1.17 1.11 1.32 3.21

20k/s
Write 0.73 0.64 0.83 2.19

Read 1.36 1.1 2.4 4.23

30k/s
Write 0.79 0.65 0.92 2.18

Read 1.46 1.15 2.74 4.37

40k/s
Write 0.92 0.71 1.08 2.3

Read 1.59 1.27 2.59 4.37

50k/s
Write 1.26 0.83 1.74 2.96

Read 2.15 1.56 3.39 5.27

60k/s
Write 2.43 0.99 1.99 4.36

Read 3.38 1.95 3.87 6.47

70k/s
Write 4.11 1.54 2.91 6.21

Read 5.68 3.22 5.69 10.5

Cassandra 4

Load Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

10k/s 1.43 1.35 1.67 4.01

20k/s 1.6 1.42 1.92 6.05

30k/s 2.14 1.71 2.66 10.85

40k/s 4.5 2.42 6.42 53.22

50k/s Could not keep up with the load

35

Cassandra 4

Cassandra 3

Load Operation Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

10k/s Write 0.92 0.89 1.07 1.24

Read 1.41 1.37 1.65 2.24

20k/s Write 0.97 0.9 1.08 1.53

Read 1.59 1.43 1.86 5.03

30k/s Write 1.45 0.99 1.32 4.98

Read 2.38 1.65 2.81 11.41

40k/s Write 9.85 1.56 6.16 257.95

Read 12.10 2.94 11.98 265.03

50k/s Could not keep up with the load

Load Operation Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

10k/s Write 4.52 0.89 1.08 141.16

Read 5.41 1.36 1.71 133.23

20k/s Write 17.67 0.94 1.44 391.12

Read 18.45 1.51 6.16 388.24

30k/s Write 48.88 1.3 216.14 553.12

Read 50.53 2.3 217.84 556.79

40k/s Write 252.97 146.28 687.34 1182.79

Read 257.50 150.86 693.11 1188.04

50k/s Could not keep up with the load

80k/s
Write 4.54 1.96 3.68 7.5

Read 6.64 4.02 7.18 13.53

90k/s
Write 59.32 2.99 224.66 773.85

Read 67.48 6.28 248.64 827.85

100k/s Could not keep up with the load

36

Cassandra 4

Cassandra 3

Load Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

20k/s 0.87 0.84 1 1.25

40k/s 1.24 0.99 1.38 6.93

60k/s Could not keep up with the load

Load Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

20k/s 7.12 0.86 1.07 244.97

40k/s 56.24 1.29 259.26 546.83

60k/s Could not keep up with the load

Load Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

20k/s 0.61 0.59 0.7 0.83

40k/s 0.72 0.6 0.74 2.65

60k/s 0.82 0.66 0.87 2.74

80k/s 0.9 0.72 1.04 2.93

100k/s 1.31 0.85 2.6 3.26

120k/s 1.46 0.97 2.67 3.88

140k/s 2.21 2.42 3.06 5.37

160k/s 2.07 2.29 2.95 5.16

180k/s 2.33 2.41 3.13 6.06

200k/s 4.81 2.89 4.18 7.96

220k/s Could not keep up with the load

UNIFORM DISTRIBUTION (MEMORY-INTENSIVE) - WRITES WORKLOAD - ONLY WRITES

Scylla 4.4.3

37

Cassandra 4

Cassandra 3

Load Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

20k/s 0.91 0.86 1.01 1.58

40k/s 1.35 1.05 1.57 7.2

60k/s 4.01 1.81 3.88 33.31

80k/s 18.95 5.99 18.06 463.99

100k/s Could not keep up with the load

Load Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

20k/s 2.48 1.02 1.25 35.75

40k/s 8.93 1.65 3.48 191.89

60k/s 58.11 9.77 198.71 365.43

80k/s Could not keep up with the load

Load Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

20k/s 0.62 0.6 0.71 0.84

40k/s 0.63 0.59 0.7 0.85

60k/s 0.68 0.63 0.78 1

80k/s 0.74 0.68 0.87 1.26

100k/s 0.84 0.74 0.97 1.96

120k/s 0.92 0.81 1.08 2.5

140k/s 1.02 0.89 1.23 3.15

160k/s 1.14 0.98 1.4 3.7

180k/s 1.29 1.11 1.61 4.51

200k/s 1.48 1.26 1.87 5.31

220k/s 1.71 1.48 2.2 6.14

240k/s 2.16 1.71 2.58 7.19

260k/s 7.55 2.06 3.98 188.09

280k/s 69.8 4.19 206.57 600.31

300k/s 272.79 183.5 669.52 1063.78

320k/s Could not keep up with the load

UNIFORM DISTRIBUTION (MEMORY-INTENSIVE) - WRITES WORKLOAD - ONLY WRITES

Scylla 4.4.3

38

UNIFORM DISTRIBUTION - MIXED WORKLOAD - 50% READS AND 50% WRITES

Scylla 4.4.3

Load Operation Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

20k/s
Write 0.61 0.59 0.7 0.85

Read 0.66 0.64 0.76 0.94

40k/s
Write 0.66 0.6 0.74 2.5

Read 0.73 0.65 0.83 2.61

60k/s
Write 0.75 0.66 0.88 2.61

Read 0.83 0.73 0.99 2.7

80k/s
Write 0.91 0.75 1.08 2.75

Read 1 0.83 1.22 3.08

100k/s
Write 1.31 0.93 2.58 3.55

Read 1.43 1.05 2.72 3.72

120k/s
Write 1.95 1.04 2.34 4.02

Read 2.07 1.17 2.43 4.24

140k/s
Write 1.92 1.59 3.08 5.36

Read 2.07 1.79 3.19 5.53

160k/s
Write 2.11 1.83 3.21 5.85

Read 2.29 2.05 3.4 6.18

180k/s
Write 86.03 2.93 416.02 866.65

Read 87.91 3.07 427.03 889.72

200k/s Could not keep up with the load

Cassandra 4

Load Operation Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

20k/s Write 0.85 0.81 0.96 1.25

Read 1 0.94 1.13 2.02

40k/s Write 1.79 0.96 1.41 9.05

Read 2.16 1.2 1.98 11.94

60k/s Could not keep up with the load

39

Cassandra 3

Load Operation Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

20k/s Write 8.46 0.86 1.06 287.57

Read 8.6 1.04 1.36 284.16

40k/s Write 88.29 1.8 344.98 772.8

Read 89.49 2.57 347.34 776.47

60k/s Could not keep up with the load

DETAILED RESULTS - “4 VS 40” BENCHMARK

MIXED WORKLOAD - 50% READS AND 50% WRITES

Scylla 4.4.3

Load Operation Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

50k/s
Write 1 0.96 1.2 1.77

Read 1.7 1.63 2.04 2.93

100k/s
Write 1.06 0.96 1.47 2.34

Read 1.96 1.76 2.82 4.34

150k/s
Write 0.8 0.72 1.02 2.17

Read 1.46 1.29 1.98 3.69

200k/s
Write 0.8 0.68 0.99 2.23

Read 1.46 1.16 2.88 4.23

250k/s
Write 0.99 0.82 1.85 2.72

Read 1.81 1.39 3.31 4.84

300k/s
Write 1.15 0.97 1.98 3.12

Read 2.05 1.62 3.55 5.1

350k/s
Write 1.41 1.19 2.27 3.79

Read 2.45 2 3.94 5.73

400k/s
Write 1.79 1.52 2.71 4.43

Read 2.94 2.55 4.47 6.45

450k/s
Write 2.08 1.87 3.07 5.14

Read 3.39 3.13 5.19 7.56

500k/s
Write 2.53 2.39 3.68 6.09

Read 4.25 4.03 6.33 9.64

40

Cassandra 4

Load Operation Mean latency (ms) Median latency (ms) 90% latency (ms) 99% latency (ms)

50k/s
Write 0.92 0.9 1.07 1.24

Read 1.41 1.37 1.64 2.83

100k/s
Write 0.86 0.83 0.97 1.14

Read 1.35 1.29 1.56 2.93

150k/s
Write 0.87 0.82 0.95 1.18

Read 1.38 1.3 1.6 3.27

200k/s
Write 1.93 0.86 1 1.57

Read 2.47 1.36 1.73 3.78

250k/s
Write 0.96 0.9 1.08 2.7

Read 1.59 1.44 1.96 4.6

300k/s
Write 1.07 0.96 1.21 3.59

Read 1.84 1.57 2.39 6.42

350k/s
Write 1.22 1.03 1.42 4.33

Read 2.23 1.78 3.22 9.16

400k/s
Write 1.43 1.16 1.86 5.37

Read 2.78 2.11 4.58 12.43

450k/s
Write 1.96 1.36 2.64 7.93

Read 3.74 2.59 6.19 18.73

500k/s
Write 3.33 1.67 3.94 19.09

Read 5.78 3.27 8.88 35.88

550k/s
Write 7.49 2.35 7.29 166.46

Read 11.24 4.65 16.42 171.57

600k/s
Write 96.88 8.17 256.51 1131.41

Read 102.16 15.38 262.67 1136.66

650k/s Could not keep up with the load

550k/s
Write 2.83 2.62 4.12 6.94

Read 4.82 4.48 7.27 11.71

600k/s
Write 3.08 2.72 4.49 8.28

Read 5.41 4.69 8.24 15.64

650k/s Could not keep up with the load

41

Benchmark Scylla 4.4 Cassandra 4.0

Data: 1TB per node

Workload: 50% W/R

Distribution: Uniform
Low cache hit ratio

Max throughput: 90k/s

p99th latency < 10ms: 60k/s

Max throughput: 40k/s

p99th latency < 10ms: 20k/s

Data: 1TB per node

Workload: 100% W

Distribution: Uniform
Disk-intensive workload

Max throughput: 180k/s

p99th latency < 10ms: 170k/s

Max throughput: 50k/s

p99th latency < 10ms: 30k/s

Data: 1TB per node

Workload: 100% R

Distribution: Uniform
Low cache hit ratio

Max throughput: 80k/s

p99th latency < 10ms: 60k/s

Max throughput: 40k/s

p99th latency < 10ms: 20k/s

Data: 1TB per node

Workload: 50% W/R

Distribution: Uniform
High cache hit ratio

Max throughput: 180k/s

p99th latency < 10ms: 160k/s

Max throughput: 40k/s

p99th latency < 10ms: 20k/s

Data: 1TB per node

Workload: 100% W

Distribution: Uniform
Memory-intensive workload

Max throughput: 200k/

p99th latency < 10ms: 200k/s

Max throughput: 40k/s

p99th latency < 10ms: 40k/s

Data: 1TB per node

Workload: 100% R

Distribution: Uniform
High cache hit ratio

Max throughput: 300k/s

p99th latency < 10ms: 240k/s

Max throughput: 80k/s

p99th latency < 10ms: 40k/s

Data: 1TB per node

Workload: 50% W/R

Distribution: Gaussian
Medium cache hit ratio

Max throughput: 80k/s

p99th latency < 10ms: 70k/s

Max throughput: 40k/s

p99th latency < 10ms: 10k/s

LATENCY / THROUGHPUT - 3 X I3.4XLARGE

Note: throughput numbers are reported with 10k/s granularity (in some cases 20k/s).

42

Administrative operations - 3 x i3.4xlarge

Benchmark Scylla 4.4 Cassandra 4.0

Add single node

Data: 1TB per node

36 minutes 56 seconds 107 minutes 1 second

Adding a node on Scylla is about 3 times faster

Double cluster size

Data: 1TB per node

94 minutes 57 seconds 238 minutes 21 seconds

Doubling cluster size on Scylla is about 2.5 times faster

Replace a node

Data: 1TB per node

54 minutes 19 seconds 208 minutes 46 seconds

Replacing node on Scylla is about 4 times faster

4 vs 40

Benchmark Scylla 4.4 (4x i3.metal) Cassandra 4.0 (40x i3.4xlarge)

Yearly cost
AWS us-east-2 region

On-demand: $174,919.68

1 year reserved instances, all-
upfront: $111,424.00

On-demand: $437,299.20

1 year reserved instances, all-
upfront: $278,560.00

Latency / throughput

Data: 40TB altogether

Workload: 50% W/R

Distribution: Uniform
Low cache hit ratio

Max throughput: 600k/s

p99th latency < 10ms: 350k/s

Max throughput: 600k/s

p99th latency < 10ms: 350k/s

25% capacity increase

Data: 40TB altogether

1 hour 29 minutes 29 seconds 16 hours 54 minutes 52 seconds

Increasing capacity is about 11 times faster on Scylla

Copyright © 2021 ScyllaDB Inc. All rights reserved. All trademarks or
registered trademarks used herein are property of their respective owners.

United States Headquarters
2445 Faber Place, Suite 200
Palo Alto, CA 94303 U.S.A.
Email: info@scylladb.com

Israel Headquarters
11 Galgalei Haplada
Herzelia, Israel

SCYLLADB.COM

ABOUT SCYLLADB

Scylla is the real-time big data database. API-compatible
with Apache Cassandra and Amazon DynamoDB, Scylla
embraces a shared-nothing approach that increases
throughput and storage capacity as much as 10X.
Comcast, Discord, Disney+ Hotstar, Grab, Medium,
Starbucks, Ola Cabs, Samsung, IBM, Investing.com and
many more leading companies have adopted Scylla to
realize order-of-magnitude performance improvements
and reduce hardware costs. Scylla’s database is available
as an open source project, an enterprise edition and a
fully managed database as a service. ScyllaDB was
founded by the team responsible for the KVM hypervisor.
For more information: ScyllaDB.com

https://www.scylladb.com/users/
https://www.scylladb.com/

	Summary of Results
	Limitations of Our Testing
	Cluster of Three i3.4xlarge Nodes
	3-Node Test Setup
	Throughput and Latencies
	“Real-life” (Gaussian) Distribution
	Mixed Workload – 50% reads and 50% writes
	Uniform Distribution (disk-intensive, low cache hit ratio)
	Writes Workload – Only Writes
	Reads Workload – Only Reads
	Mixed Workload – 50% reads and 50% writes
	Writes Workload – Only Writes
	Writes Workload – Only Writes
	Reads Workload – Only Reads
	Mixed Workload – 50% reads and 50% writes
	Adding Nodes
	One New Node
	Doubling Cluster Size
	Replace Node
	Major Compaction
	“4 vs. 40” Benchmark
	4 vs. 40 Node Setup
	Throughput and Latencies
	Mixed Workload – 50% reads and 50% writes
	Scaling the Cluster up by 25%
	Major Compaction
	Summary
	Supplementary Information

